Welcome to Horton-Part’s documentation!
HORTON-PART is a computational chemistry package that supports different partition schemes.
It is based on the sub-module part
of HORTON2
, which is written and maintained by Toon Verstraelen (2).
In HORTON3
, all sub-modules have been rewritten using the pure Python programming language to support Python 3+.
See more details on this website.
It should be noted that HORTON2
also supports Python 3+ now.
The part
module has also been rewritten and is now called denspart module.
However, the algorithm implemented in denspart
only uses one-step optimization, which can be computationally expensive for large systems.
Additionally, denspart
only supports the MBIS
partitioning scheme.
Another part
module has been rewritten in pure Python programming language by Farnaz Heidar-Zadeh (2).
However, the integration grid implemented in this module still uses the old ‘grid’ from Horton2.
HORTON-PART with version 0.0.X
is based on this module.
Starting from version 1.X.X
, HORTON-PART only supports the new integration qc-grid.
The molecular density can be prepared using IOData
(https://github.com/theochem/iodata) and GBasis
(https://github.com/theochem/gbasis) packages.
This version contains contributions from YingXing Cheng (1), Toon Verstraelen (2), Pawel Tecmer (3), Farnaz Heidar-Zadeh (3), Cristina E. González-Espinoza (3), Matthew Chan (3), Taewon D. Kim (3), Katharina Boguslawski (3), Stijn Fias (4), Steven Vandenbrande (2), Diego Berrocal (3), and Paul W. Ayers (3)
Numerical Mathematics for High Performance Computing (NMH), University of Stuttgart, Stuttgart, Germany.
Center for Molecular Modeling (CMM), Ghent University, Ghent, Belgium.
The Ayers Group, McMaster University, Hamilton, Ontario, Canada.
General Chemistry (ALGC), Free University of Brussels, Brussels, Belgium.
The Horton-Part
source code is hosted on GitHub and is released under the GNU General Public License v3.0.
Please report any issues you encounter while using Horton-Part
library on
GitHub Issues.
For further information and inquiries please contact us at yxcheng2buaa@gmail.com.
Functionality
Real space partitioning schemes
Mulliken partitioning method
Density related partitioning schemes
Becke partitioning method
Stockholder schemes
Hirshfeld partitioning method
Iterative Stockholder schemes
Iterative Hirshfeld (Hirshfeld-I) partitioning method
Iterative Stockholder Approach (ISA)
Minimal Basis Iterative Stockholder (MBIS)
Gaussian iterative stockholder approach (GISA)
Alternating Linear approximation of the ISA (aLISA) method
Global Linear approximation of the ISA (gLISA) method
Generalized Minimal Basis Iterative Stockholder (GMBIS)
Non-linear approximation of the ISA (NLIS) method
Citations
Please use the following citations in any publication using horton-part
library:
[1] Cheng, Y.; Stamm, B. Approximations of the Iterative Stockholder Analysis scheme using exponential basis functions. arXiv 2024, 2412.05079
[2] Cheng, Y.; Cancès, E.; Ehrlacher, V.; Misquitta, A. J.; Stamm, B. Multi-center decomposition of molecular densities: A numerical perspective. J. Chem. Phys. 2025, 162, 074101. https://doi.org/10.1063/5.0245287
[3] Benda, R.; Cancès, E.; Ehrlacher, V.; Stamm, B. Multi-center decomposition of molecular densities: A mathematical perspective. J. Chem. Phys. 2022, 156, 164107. https://doi.org/10.1063/5.0076630
[4] Chan, M.; Verstraelen, T.; Tehrani, A.; Richer, M.; Yang, X. D.; Kim, T. D.; Vöhringer-Martinez, E.; Heidar-Zadeh, F.; Ayers, P. W. The tale of HORTON: Lessons learned in a decade of scientific software development. J. Chem. Phys. 2024, 160, 162501. https://doi.org/10.1063/5.0196638
[5] Tehrani, A.; Yang, X. D.; Martínez-González, M.; Pujal, L.; Hernández-Esparza, R.; Chan, M.; Vöhringer-Martinez, E.; Verstraelen, T.; Ayers, P. W.; Heidar-Zadeh, F. Grid: A Python library for molecular integration, interpolation, differentiation, and more. J. Chem. Phys. 2024, 160, 172503. https://doi.org/10.1063/5.0202240
[6] Kim, T. D.; Pujal, L.; Richer, M.; van Zyl, M.; Martínez-González, M.; Tehrani, A.; Chuiko, V.; Sánchez-Díaz, G.; Sanchez, W.; Adams, W.; Huang, X.; Kelly, B. D.; Vöhringer-Martinez, E.; Verstraelen, T.; Heidar-Zadeh, F.; Ayers, P. W. GBasis: A Python library for evaluating functions, functionals, and integrals expressed with Gaussian basis functions. J. Chem. Phys. 2024, 161, 042503. https://doi.org/10.1063/5.0216776
[7] Verstraelen, T.; Adams, W.; Pujal, L.; Tehrani, A.; Kelly, B. D.; Macaya, L.; Meng, F.; Richer, M.; Hernández-Esparza, R.; Yang, X. D.; Chan, M.; Kim, T. D.; Cools-Ceuppens, M.; Chuiko, V.; Vöhringer-Martinez, E.; Ayers, P. W.; Heidar-Zadeh, F. IOData: A python library for reading, writing, and converting computational chemistry file formats and generating input files. J. Comput. Chem. 2021, 42, 458–464. https://doi.org/10.1002/jcc.26468
Modules
Modules |
Description |
---|---|
Becke partitioning method |
|
Hirshfeld partitioning method |
|
Iterative Hirshfeld partitioning method |
|
Iterative Stockholder analysis (ISA) method |
|
Minimal Basis Iterative Stockholder (MBIS) method |
|
Gaussian iterative stockholder approach (GISA) |
|
Alternating Linear approximation of the ISA method (aLISA) |
|
Global linear approximation of the ISA method (gLISA) |
|
Generalized Minimal Basis Iterative Stockholder (MBIS) method |
|
Non-linear approximation of the ISA method (NLIS) method |
User Documentation
Quick Start
Example Tutorials
- Prepare Molecular Density and Grid
- Iterative Stockholder Analysis (ISA) method
- Gaussian Iterative Stockholder Analysis (GISA) method
- Minimum Basis Iterative Stockholder (MBIS) scheme
- Alternating Linear approximation of the ISA (aLISA) method
- New Direct Inversion in Iterative Space (DIIS)
- Global Linear approximation of the ISA (gLISA) method
- (Iterative) Hirshfeld method
- Mulliken method
API Documentation